A Proposal for (B) VO₂ ⇒ (A) VO₂ Phase Transition: A Simple Crystallographic Slip

Jean Galy

Institut fur Anorganische Chemie, Universität Tubingen, Auf der Morgenstelle 18, D-72076 Tubingen, Germany; and Centre d'Elaboration de Matériaux et d'Etudes Structurales, Centre National de la Recherche Scientifique, 29, rue Jeanne Marvig, BP 4347, 31055 Toulouse Cedex, France

Received February 3, 1999; in revised form June 1, 1999; accepted July 29, 1999

(B) $VO₂ crystallizes in the monoclinic system, $C2/m$ space$ group with $a = 12.093(1)$ Å, $b = 3.7021(2)$ Å, $c = 6.4330(5)$ Å, and $\beta = 106.97(1^{\circ})$ as cell parameters. (A) VO₂ with two allotropic varieties crystallizes in the tetragonal system, the low temperature form AL adopts *P*4**/***ncc* space group with $a = 8.4403(9)$ Å and $c = 7.666(1)$ Å and A_H the space group *I*4/*m* with $a = 8.476(2)$ Å and $c = 3.824(2)$ Å. In these structures, VO₆ octahedra are associated in quadruple strings by edge sharing in the former structure whereas they form cross-linked double strings in the latter; both endless string types develop along parameters *b* or $c \sim 3.8$ Å periodicity). In the first association they build the so-called double layers $D4$ in (B) $VO₂$ and Dz in (A) VO_2 , parallel to (001) and (110) planes, respectively, and associated, in their perpendicular direction, by corner sharing. These D4 layers exhibit the weakest $V-O$ bonding perpendicular to their medium plane (parallel to (001)) allowing a crystallographic slip $Cs - 1/3$ [100] (001) to occur in the structure, transforming (B) $VO₂$ into (A) $VO₂$. Design of (B) and (A) crystal structures via crystallographic shear mechanisms is related to chemical experimental conditions of formation: temperature, pressure, and stress. © 1999 Academic Press

INTRODUCTION

Vanadium dioxide exhibits a number of polymorphic forms: monoclinic (M1) $VO₂$ [\(1\)](#page-4-0), which is stable at room temperature, prepared by solid state synthesis at 800° C from V_2O_5 and V_2O_3 mixtures; (M1) transforms at 68°C a tetragonal rutile form (R) VO₂ [\(2\)](#page-4-0). In 1976, using soft chemistry routes, Théobald *et al.* made a pioneering work by discovering and characterizing two new varieties: (A) VO_2 and (B) VO_2 [\(3, 4\).](#page-4-0) These authors showed that (A) crystallizes in the tetragonal system whereas (B) adopts the monoclinic system, space group $C2/m$, and a crystal structure isotypic with $Na_{0.20}TiO₂$ [\(5\).](#page-4-0) All structural data were obtained by X-ray powder pattern indexing. The cell parameters are listed in [Table 1.](#page-1-0) In 1993, Oka *et al*. showed by Rietveldt refinement of the (B) VO₂ structure that $V^{4+}-V^{4+}$ pairing occurs with a subsequent magnetic susceptibility decrease when the phase cools down to 180 K [\(6\).](#page-4-0)

These authors [\(7\)](#page-4-0) also determined the (A) $VO₂$ crystal structure by Rietveldt analysis with a cell derived from that of Theobald, $a_{\text{new}} = a_{\text{old}} / \sqrt{2}$ and $c_{\text{new}} = c_{\text{old}}$, the space group being $P4_2$ /ncm (see [Table 1\)](#page-1-0). (A) VO₂ is isostructural with $CoMoO₄$ [\(8\)](#page-4-0). They reported a reversible phase transformation at 162° C, parameter *c* being divided by 2 in the high temperature phase. They proposed a mechanism for the $(A_L) \text{ VO}_2 \Rightarrow (A_H) \text{ VO}_2$ transformation associated with "detilting" of the VO_6 octahedra along the *c*-axis. However, they were not able to fully confirm this in a structural study performed at 200° C, the structure remaining the same with a slight variation of the V–V interatomic distances (9) . Subsequently they mechanochemically induced the (B) $VO_2 \Rightarrow (A) \text{ VO}_2$ transformation by compressing or grinding, proposing a mechanism for this phase transition based on oxygen vacanices and vanadium atom shifts [\(10\).](#page-4-0) A similar mechanism was proposed with a theoretical approach by Leroux *et al.* [\(11, 12\)](#page-4-0). While writing the final version of this paper, Oka *et al*. published an X-ray single crystal structure refinement of the A_L and A_H VO₂ forms [\(13\)](#page-4-0) [\(Table](#page-1-0) [1\).](#page-1-0) A_L VO₂ variety is described in a different space group, *P*4/*ncc*, rather than P_{2} /*ncm*, and A_H VO₂, with its halfparameter c (3.824 Å), adopting the $I4/m$ space group. For the purpose of our work the general description of both structures remains the same.

The aim of this paper is to propose another structural mechanism for (B) $VO_2 \Rightarrow (A) VO_2$ phase transition and by providing structural description of these phases, derived from the basic V_2O_5 , to try to correlate their formation to the chemical routes of synthesis: reduction, hydrothermal reactions, mechanochemical stress.

FORMATION OF (B) $VO₂$ AND (A) $VO₂$

The basic compound is vanadium pentoxide V_2O_5 , with a layer structure in which vanadium coordination is purely square pyramidal (VO₅ SP). The single $[V_2O_5]_n$ layer,

Phase Cryst. Space Phases transition system^a group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ β ^(°) $V(\hat{A}^3)$ *d* d_{\exp} d_x *Z* Ref. V_2O_5 ^O⁵ ortho. *Pmmn* 11.512 3.564 4.368 179.2 3.37 2 11 $(R)Nb₂O₅$ ^O⁵ mon. *^C*2/*^m* 12.79 3.826 3.983 90.8 194.9 4.53 2 17 (M1) VO_2 68°C mon.
 (R) VO_2 68°C tetrag. $P2_1/c$ /*c* 5.743 4.517 5.375 122.61 117.5 4.65 4.69 4 1 (R) $VO₂$ $P4_2$ /mn /*mn* 4.530 4.530 2.869 58.9 4.68 2 2 *m* (B) VO₂ 220°C mon. $C2/m$ 12.03 3.693 6.420 106.6 273.3 4.03 8 4

(A) VO₂ 220°C mon. $C2/m$ 12.03 3.693 6.420 106.6 273.3 4.03 8 4 (A) $VO₂$ 350°C tetrag. 11.90 11.90 7.68 1087.6 4.05 32 3 (B) VO₂ 300° C + 440 MPa mon. $C2/m$ 12.093 3.702 6.433 107.0 275.4 4.00 8 6 (A) $VO₂$ 162°C tetrag. *P*4 $P4_2/ncm$
 $P4/ncc$ /*ncm* 8.434 8.434 7.678 546.2 4.02 16 7 $(A_L) \text{VO}_2$) VO² ¹⁶²3C tetrag. *^P*4/*ncc* 8.440 8.440 7.666 546.2 4.02 16 13 (A_H) VO₂) VO² tetrag. *^I*4/*^m* 8.476 8.476 3.824 274.7 4.01 8 13

TABLE 1 Crystallographic Data

^a Abbreviations: mon., monoclinic; ortho., orthorhombic; tetrag., tetragonal.

noted S, is built up by endless double strings of $VO₅$ SP associated by corner sharing $(14–16)$ (see Table 1). This structure is very similar to that of $R-Nb₂O₅$ [\(17\)](#page-4-0) in which the shortening of the *c*-parameter is due to the establishment of the sixth Nb–O = 1.92 Å bond to build NbO₆ octahedra whereas the same V–O interatomic distance is 2.791 Å. Therefore, to facilitate the subsequent discussion, we opt for an ideal description of V_2O_5 made up of S layers of VO_6 octahedra interconnected via corner sharing [\(Fig.](#page-2-0) [1a\)](#page-2-0). However, what occurs when V_2O_5 is reduced, by hydro-gen for example? Théobald [\(18\)](#page-4-0) gave a precise answer to this question. In the temperature range $200-400^{\circ}$ C, V_4O_9 is formed, then (B) VO₂, the ultimate oxide being V_2O_3 . Between 400–500°C, V_6O_{13} or (R) VO_2 rutile is obtained. Starting from $VO_2H_2O + a$ mixture of oxides exhibiting roughly 3.9-4.1 oxidation state under hydrothermal conditions (B) VO_2 is formed at 180°C and (A) VO_2 at 220°C.

The direct synthesis of (A) VO₂, which can only be achieved via hydrothermal methods, has been confirmed by Oka *et al*. [\(10\).](#page-4-0)

SHEARING MECHANISM IN V_2O_5

The presence of double $[V_2O_5]_n$ layers is amply supported by several vanadium oxide bronzes (VOBs) detailed elsewhere [\(16\)](#page-4-0). If an oxygen plane is removed in the V_2O_5 network with a 2c period, via hydrogen reduction, the structure can collapse according to three types of crystallographic shears (CS) [\(Fig. 1b\),](#page-2-0) thus yielding structures with $VO₂$ stoichiometry:

(1) $CS = 1/6$ [103] (001), *CS* indicated by arrow B1 [\(Fig](#page-2-0). [1b\).](#page-2-0) A double layer is formed with quadruple endless strings of VO_6 octahedra sharing edges along [010]; these layers are named D4. Interconnected by corners along [001] they form the monoclinic (B) $VO₂$ [\(Fig. 1c\).](#page-2-0)

(2) $CS = 1/6[-103]$ (001), *CS* indicated by arrow B2. The same type of double layer is formed, but its mirror image named D4m, yielding again $(B) VO₂$ [\(Fig. 1d\)](#page-2-0). Note that both D4 and D4m layers exist in the ρ K_xV₂ that both D4 and D4m layers exist in the ρ K_xV₂O₅ vanadium oxide bronze where they make an alternate ordered stacking of sandwiching potassium atom planes $...D4-K-D4m-D4...$ [\(19, 20\).](#page-4-0)

(3) $CS = \frac{1}{2}$ [101] (001) (arrow A); an original double layer called Dz is formed by cross-linked double strings of $VO₆$ octahedra sharing edges and corners. Dz layers held together by corner sharing, via the untouched oxygen plane, form (A) $VO₂$ [\(Fig. 1e\).](#page-2-0) Dz layers associated to D4 ones exist, making a nonordered packing separated by sodium atoms planes in the VOB intergrowth structure of τ Na_xV₂O₅[\(21\)](#page-4-0).

Note that V_6O_{13} is obtained from the same crystallographic shear $CS = 1/6[103]$ (001) as (B) VO₂ but with a 3*c* repetition period along $[001]$ in the V_2O_5 network. The sequence of layers connected by corners is ...D4-S-D4-S... The V_6O_{13} crystal structure has been determined by Aebi [\(22\)](#page-4-0) and refined by Wilhelmi *et al.* also [\(23\)](#page-4-0). V_6O_{13} and (B) $VO₂$ exhibit almost the same *a* and *b* parameters allowing for an easy topotactic association and tending to induce some confusion about $VO₂$ over stoichiometry in oxygen.

MECHANISM OF THE (B) $VO_2 \Rightarrow (A) VO_2$ PHASE TRANSITION

Both (B) VO_2 and (A) VO_2 structures have been idealized in [Figs. 2a](#page-3-0) and [2b](#page-3-0) where the cells are denoted by dotted lines. Crystallographic data are summarized in Table 1.

FIG. 1. (a) Crystallographic shears A, B1, and B₂ in the ideal V₂O₅ structure and indication of the potential sites for oxygen vacancies (*CS* repetition 2*c*). (b) Formal elimination of the oxygen planes. (c) Formation of D4 layers (B1) by $CS = 1/6[103]$ (001). (d) Formation of D4m layers (B2) by $CS = 1/6[-103]$ (001). (e) Formation of Dz layers (A) by $CS = \frac{1}{2} [101]$ (001).

Parameter c of (A) form is twice the value of b in (B) VO_2 ; nevertheless, the small tilting of $VO₆$ octahedra along the *c*-axis allows us to represent this structure as a projection along an axis \sim 3.8 Å as in B; such representation also corresponds to A_H form. The most accurate data for A_H and ^A^L varieties [\(13\)](#page-4-0) are listed in [Table 1](#page-1-0).

The essential point is the analysis of the $V-O$ bonding in D4 and Dz. When separated, as in the $M_xV_2O_5$ VOBs, vanadium atoms shift toward the apices of the octahedra pointing toward the intercalated M atom's layer. The length of this V–O bond is typical of a V=O double bonding, i.e., \sim 1.60 Å. Perpendicular to the median plane of D4 and Dz, a long V–O bond \sim 2.2–2.3 Å appears opposite the V=O, which indicates a certain weakness in the association of the two single layers *S* by edge sharing.

In (B) and (A) structures, strong V–O bonds with the oxygen atoms along the *b* and *c* parameters are formed with those providing connection between successive D4 or Dz layers: V1–O1 = 1.721 Å and V2–O1 = 1.930 Å for the former and V -O2 = 1.993 and 1.784 Å for the latter. Opposite these bonds and perpendicular to the median plane (mp) of D4 and Dz layers are the weakest bonds $V1-O2 = 2.318$ Å and V2–O3 = 2.059 Å in the (B) form and V–O1 = 2.030 and 2.241 \AA in the A form. For clarity, a schematic drawing is given in [Fig. 3.](#page-3-0)

Of course the vanadium atoms are again displaced, although slightly less than in the VOB case, towards the oxygen shared by two consecutive double layers making up a strong V-O-V bonding $\langle V-O \sim 1.86 \text{ Å} \rangle$. The strongest association in the structure is the double layer DS formed by two S layers associated by corners (see [Fig. 2\).](#page-3-0)

Thus, via a simple crystallographic slip $Cs = 1/3[-100]$ (001) applied in the median plane of the D4 layers of the (B) $VO₂$ structure, we can transform them into Dz layers and then build up the (A) VO₂ structure.

FIG. 2. Ideal representation projected along the \sim 3.8 Å axis of (a) (B) $VO₂$ monoclinic variety; (b) (B) $VO₂$ tetragonal variety. D4 and Dz double layers and their mp (median plane) are indicated. DS represents the double layer formed by two single S layers.

DISCUSSION

Formation of the (B) VO_2 phase by reduction of V_2O_5 and the related structural inference obtained by applying *CS* (B1 or B2) in the mother network are in good agreement. The *CS* A also explain why (A) $VO₂$ is not obtained via this type of synthesis, the implied atomic shifts being too large. The repetition of *CS* B along [001], 2*c* for VO_2 and 3*c* for V_6O_{13} , still making reasonable periodicity, appears more dubious for V_4O_9 , implying a periodicity of 4*c*. The structure of this oxide determined by Wilhelmi *et al*. is utterly different (24) ; we found exactly the same structure (25) . V_3O_7 also shows an original structure [\(26, 27\).](#page-4-0)

For the (B) $VO_2 \Rightarrow (A) VO_2$ transition, Oka *et al.* [\(10\)](#page-4-0) proposed a mechanism based on the shift of oxygen vacancies along [100] in the fcc lattice with a rearrangement of vanadium atoms. This model occurs in the well-tightened part of the structure and implies fairly important jumps of the vanadium atoms. Our proposal based on the crystallographic slip $Cs = 1/3[-100](001)$ appears supported by Théobald's and Oka's experiments:

 $-$ (A) VO₂ only appears under hydrothermal conditions [\(4,](#page-4-0) [10\),](#page-4-0) i.e., pressure;

 $-$ (A) VO₂ is induced mechanochemically, the transformation being accelerated by grinding, this being con firmed by X-ray diffraction powder patterns of samples treated at 300° C after compression under 440 Mpa for 5 min [\(9\).](#page-4-0)

To summarize, under reducing conditions V_2O_5 can only yield V_6O_{13} and (B) VO_2 phases, but not (A) VO_2 , this latter phase being obtained under metastable conditions when pressure effects are playing a significant role. Structural deduction of the (A) VO₂ network from V2 ^O⁵ by a crystallographic shear *CS* operation, described for the first time, has resulted in a new way for the phase transition (B) towards (A). Finally, the (B) $VO_2 \Rightarrow (A)$ $VO₂$ transition is simply described by a crystallographic slip Cs occurring in the median plane of the double layers $D4$ of the monoclinic (B) $VO₂$, the mechanochemical activation breaking the weakest bonds of this structure and promoting a simple cooperative displacement to give the tetragonal (A) VO₂. The general scheme is

FIG. 3. Schematic drawing of the V-O bonding in both D4 and Dz layers of the (B) and (A) $VO₂$ phases, the dotted lines representing the weak bonding perpendicular to the mp (median plane) where the $Cs = 1/3[-100](001)$ occurs.

as follows:

$$
V_2O_5 \underset{CS=1/6[103](001)}{\Rightarrow} (B) \text{ VO}_2 \underset{CS=1/6[-100](001)}{\Rightarrow} (A_L) \text{ VO}_2
$$
\n
$$
\Rightarrow (A_L) \text{ VO}_2
$$
\n
$$
\Rightarrow \text{Temperature}
$$

 (A_H) VO₂

ACKNOWLEDGMENTS

This paper is dedicated to Alexander von Humboldt-Stiftung. The author expresses his thanks to Prof. Dr. J. Strähle for his warm and fruitful welcome in this laboratory at the University of Tübingen (Germany).

REFERENCES

- 1. G. Andersson, *Acta Chem*. *Scand*. 10, 623 (1956).
- 2. S. Westman, *Acta Chem*. *Scand*. 15, 217 (1961).
- 3. F. Théobald, *J. Less Common Met*. **53,** 55 (1977).
- 4. F. Théobald, R. Cabala, and J. Bernard, *J. Solid State Chem.* 17, 431 (1976).
- 5. S. Andersson and A. D. Wadsley, *Acta Cryst*. **15,** 201-206 (1962).
- 6. Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, *J*. *Solid State Chem*. 105, 271 (1993).
- 7. Y. Oka, T. Yao, and N. Yamamoto, *J*. *Solid State Chem*. 86, 116 (1990).
- 8. G. W. Smith and J. A. Ibers, *Acata Cryst*. 19, 269 (1965).
- 9. T. Yao, Y. Oka, and N. Yamamoto, *J*. *Solid State Chem*. 112, 196 (1994).
- 10. Y. Oka, T. Yao, and N. Yamamoto, *J*. *Mater*. *Chem*. 1, 815 (1991).
- 11. Ch. Leroux, G. Nihoul, and G. Van Tendeloo, *Phys*. *Rev*. *B* 57, 5111 (1998).
- 12. C. Cesari, Ch. Leroux, and G. Nihoul, *Key Eng. Mater*. **155-156**, 227 (1998).
- 13. Y. Oka, S. Sato, T. Yao, and N. Yamamoto, *J*. *Solid State Chem*. 141, 594 (1998).
- 14. A. Byström, K. A. Wilhelimi, and O. Brotzen, *Acta Chem. Scand.* 4, 1119 (1950).
- 15. R. Enjalbert and J. Galy, *Acta Cryst*. *C* 42, 1467 (1986).
- 16. J. Galy, *J*. *Solid State Chem*. 100, 229 (1990).
- 17. R. Gruehn, *J. Less Common Met.* 11, 119 (1977).
- 18. F. Théobald, Thèse d'Etat A. O. 3998 N°96, besançon, France (1975).
- 19. Y. Kanke, K. Kato, E. Takayama-Muromachi, M. Isobe, and K. Kosuda, *Acta Cryst*. *C* 46, 1590 (1990).
- 20. J. M. Savariault and J. Galy, *J*. *Solid State Chem*. 101, 119 (1990).
- 21. J. M. Savariault, J. L. Parize, D. Ballivet-Tkatchenko, and J. Galy, *J*. *Solid State Chem*. 122, (1996).
- 22. F. Aebi, *Helv*. *Chim*. *Acta* 31, 8 (1948).
- 23. K-A. Wilhelmi, K. Waltersson, and L. Kihlborg, *Acta Chem*. *Scand*. 25, 2675, (1971).
- 24. K-A. Wilhelmi and K. Waltersson, *Acta Chem*. *Scand*. 24, 3409 (1970).
- 25. J. Galy and R. Enjalbert, unpublished results.
- 26. S. Andersson, J. Galy, and K-A. Wilhelmi, *Acta Chem*. *Scand*. 24, 1473 (1970).
- 27. K. Waltersson, B. Forslund, K-A. Wilhelmi, S. Andersson, and J. Galy, *Acta Cryst*. *B* 30, 2644 (1974).